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Abstract

In this paper, the closed-form solutions of the electroelastic Eshelby’s tensors of a piezoelectric ellipsoidal
inclusion in an infinite non-piezoelectric matrix are obtained via the Green’s function technique. Based on
the generalized Budiansky’s energy-equivalence framework and the closed-form solutions of the electroelastic
Eshelby’s tensors, a unified model for multiphase piezocomposites with the non-piezoelectric matrix and
piezoelectric inclusions is set up. The closed-form solutions of the effective electroelastic moduli of pie-
zocomposites are also obtained. The unified model has a rigorous but simple form, which can describe the
multiphase piezocomposites with different connectivities, such as 0-3, 1-3, 2-2, 2-3, 3-3 connectivities, etc.
It can also describe the effects of non-interaction and interaction among the inclusions. As examples, the
closed-form solutions of the effective electroelastic moduli are given by means of the dilute solution for the
0-3 piezocomposite with transversely isotropic piezoelectric spherical inclusions and by means of the dilute
solution and the Mori-Tanaka’s method for the 1-3 piezocomposite with two kinds of transversely isotropic
piezoelectric cylindrical inclusions. The predicted results are compared with experimental data, which shows
that the theoretical curves calculated by means of the Mori-Tanaka’s method agree quite well with the
experimental values, but the theoretical curves obtained by the dilute solution agree well with the exper-
imental values only when the volume fraction of the ceramic inclusion is less than 0.3. The results in this
paper can be used to analyze and design the multiphase piezocomposites. © 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

With the development of information industry and the appearance of smart materials and smart
structures (Jiang et al., 1994), material science has entered a new era. Conventional materials are
not able to satisfy modern engineering requirements. Since piezocomposites provide material
properties superior to conventional piezoelectric materials, piezocomposites have become attractive
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candidates for use in many fields. In the past few years, much work has been done in the analysis
and prediction of the effective properties of piezocomposites based on mesomechanics.

The micromechanical characterization and analysis of piezocomposites were launched by the
Newnham et al.’s (1978) connectivity theory, which is based on the combination of mechanics of
materials type parallel and series models. These analyses were extended by Banno (1983) to
consider discontinuous reinforcement through a cubes approach. A different route was taken by
Smith and Auld (1991) in the analysis of continuous fiber-reinforced piezoelectric composites. A
more rigorous treatment of the coupled electroelastic fields in a piezoelectric concentric cylinder
geometry was performed by Grekov et al. (1989). Benveniste (1992, 1993a, b, 1994) obtained the
effective eigenstress and spontaneous for multiphase composites with the arbitrary phase geometry
and the effective properties for fibrous piezocomposites based on the use of virtual work theorems.
But the closed-form solutions of the effective electroelastic properties for multiphase pie-
zocomposites with the arbitrary phase geometry have not been obtained yet.

Wang (1992) studied the problem via the Green’s function technique and obtained integral
expressions for the constraint—strain and constraint—electric—field of a spherical inclusion in an
infinite piezoelectric matrix, but the integral expressions are very complicated, thus the closed-
form solutions of the constraint—strain and constraint—electric—field are too difficult to obtain even
though the matrix is non-piezoelectric. Although Wang (1992) gave the closed-form solutions of
the constraint—strain and constraint—electric—field of a transversely isotropic cylindrical inclusion
in an infinite non-piezoelectric matrix and the dilute solutions of the effective electroelastic moduli
of 1-3 piezocomposites, the solutions considered the interaction among inclusions were not
obtained. Based on the contour integral representation of the Green’s function derived by Deeg
(1980), Dunn and Taya (1993a, b) made a significant contribution to the analysis of the effective
behavior of the piezocomposites when the interaction among reinforcements was considered, but
the closed-form solutions of the effective electroelastic moduli of the piezocomposites with ellip-
soidal inclusions have not been given due to the fact that the electroelastic Eshelby’s tensors are
given by a complicated integral form.

From the view of application, many piezocomposites are made up of piezoelectric inclusions
and the non-piezoelectric matrix. For example, the sensors made of piezoelectric materials, which
are widely used in smart materials or smart structures (Jiang et al., 1994), are generally embedded
in a non-piezoelectric matrix in which the elastic fields and the electric fields are decoupled. As
another example, some kinds of very important materials, such as relaxor ferroelectric materials,
are made up of a ferroelectric phase and a paraelectric phase, which can be considered as composites
with the inclusions and matrix. That is, the inclusions are the ferroelectric phase that has elec-
tromechanical coupling behavior and the matrix is the paraclectric phase which has no elec-
tromechanical coupling behavior. In this case, the problem can be simplified significantly.

This paper describes a unified model for multiphase piezocomposites with non-piezoelectric
matrix and piezoelectric ellipsoidal inclusions and obtains the closed-form solutions of the effective
electroelastic properties of this kind of piezocomposites. The unified model has a rigorous but
simple form, which can describe the multiphase piezocomposites with different connectivities, such
as 0-3, 1-3, 2-2, 2-3, 3-3 connectivities, etc. It can also describe the non-interaction and interaction
among the inclusions.

The present paper is divided into five sections:

(1) The closed-form solutions of the electroelastic Eshelby’s tensors of a piezoelectric ellipsoidal
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inclusion in an infinite non-piezoelectric matrix are obtained via a Green’s function technique.

(2) Based on the generalized Budiansky’s energy-equivalence framework (Budiansky, 1965) and
the results of the section (1), a unified model for the multiphase piezocomposites is set up and
the closed-form solutions of the effective electroelastic moduli of the multiphase pie-
zocomposites with ellipsoidal inclusions are given.

(3) The predicted results are compared with experimental data, which shows that the theoretical
values agree quite well with the experimental ones.

(4) It is analyzed in detail for the 1-3 piezocomposite with two kinds of transversely isotropic
piezoelectric cylindrical inclusions, in which one of the inclusions is aligned in the positive
direction and another is in the negative direction.

(5) In the appendices, the closed-form solutions of the effective electroelastic moduli are given
by means of the dilute solution for the 0-3 piezocomposite with the transversely isotropic
piezoelectric spherical inclusion and by the dilute solution and the Mori—Tanaka’s method
for the 1-3 piezocomposite with two kinds of transversely isotropic piezoelectric cylindrical
inclusions.

2. The single inclusion and inhomogeneity

There is a region Q (the linear piezoelectric inclusion) in an infinite homogeneous linear non-
piezoelectric medium D, the far fields are exposed with the uniform strain and electric field. It is
asked what the elastic state and the electric field of the inclusion are.

We shall solve this problem with the help of the Green’s function technique. The constitutive
equations for a linear piezoelectric inclusion is (Maugin, 1988)

6 =C*:Vu+(e*)"*V¢ inQ (1)
D=e¢*:Vu—k*-V¢ inQ 2)

where C* is the elastic moduli tensor, e* the piezoelectric moduli tensor and k* the dielectric
permittivity, respectively. The superscript ‘*’ refers to the material properties of the piezoelectric
inclusion. ¢ and u are the electric potential and elastic displacement. D and ¢ are the electric
displacement and the elastic stress. V is Laplacian operator and (e”),,, = e, Tensors and vectors
are denoted by italic bold face letters, inner products by the notation: @ x = g;;x;and 4 :a = A,a;,
and tensor products by notation: ab = ab,.

Bearing in mind that there is no electromechanical coupling in the matrix, one has the constitutive
equations in the matrix as

6=C:Vu inD—-Q 3)
D=—k-V¢$ inD—-Q 4)

where C and k are the elastic moduli tensor and the dielectric permittivity of the matrix. Because
the matrix is non-piezoelectric, we have ¢ = 0. By introducing the following characteristic function
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=y oo 0
0 otherwise
the elastic, piezoelectric tensors and the dielectric permittivity of the inclusion can be written as
C*=C+Ch(x), e*=e+e’h(x)=e*h(x), k*=k+kh(x) (6)
where
C=C*-C, e =et*—e=¢* k°=k*—k (7)
From eqns (6), (7), the eqns (1), (3) and (2), (4) can be written as
6 =C:Vu+[C°:Vu+(e”)"-Vplh(x) inD (8)
D= —k-Vo+[e":Vu—k°-V$lh(x) inD )

If the free charges and body forces do not exist, the equilibrium equations for both the inclusion
and the matrix are

Ve=0 (10)

V:-D=0 (11)
Substitution of eqns (8) and (9) into eqns (10) and (11) yields

Cittj = — [Clthies + i ) (X)] ; (12)

Kinp i = [(€lttics— Ko ) H(x)] (13)

The right terms of eqns (12) and (13) can be regard as body forces and free charges which are
applied on the matrix. Since the matrix is non-piezoelectric, two Green’s functions G* and G are
introduced as follows

Ci,‘k/Glbép,zf(x—x/) = _5ip5(x_x/) (14)
kinG G (x—x") = d(x—x') (15)

The Green’s function in eqn (14) is that of the perfectly elastic problem which can be obtained
as follows (Mura, 1987)

+

Gii(x—x) =(271')3J : Ny(&)D =1 (&) exp (i (x—x")} d& (16)

— 0

where N;; are cofactors of K;;, D(¢) is the determinant of K; and Ky (&) = Ciyéié.
The Green’s function in eqn (15) is that of the perfectly dielectric problem which can be given
by (Fan, 1995)

G (x—x') = —(27r)3rw(k,-,-é,~é,-)‘ exp {i¢(x—x")} d¢ (17)

Equations (12) and (13) can be expressed by means of the Green’s functions in the forms
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g=u G N e, 0
= u, + ﬂ G (x—X)[C g+ enyh ,1dx’ (18)
Jo
4o
=3¢+ » G¢(x—x’)[(egduk,,—k?/qﬁ,‘/)h(x’)],j, dx’
— 90+ | GUe = ki Jdx (19)
Jo

where u) and ¢° are homogeneous solutions of eqns (12) and (13). In the derivation of eqns (18)
and (19), the properties of the characteristic function and the relations

Gpy(x—x") = —Gp(x—x) (20)
GHx—x) = = Gi(x—x) @

are used. By differentiating eqns (18) and (19), the equations of the elastic strain field and electric
field can be obtained in the form

1 1
& =5 (u;;+u;,) = e+ QJ (Gl (x = X) 4 G i (x — X)) X (C st s — €pun E, ) A’ (22)
Q
E = — 4’,1‘ = EIO _J G:i;,-(x—x’) (e?k/u/a/—i_k?ﬁEﬁ)dx/ (23)
Q

In the derivation of eqns (22) and (23), C;yuy; = Cipery and E; = — ¢ ; are used.

Wang (1992), Chen (1993, 1994), Dunn and Taya (1993a) demonstrated that if a linear pie-
zoelectric ellipsoidal inclusion in an infinite linear piezoelectric matrix is subjected to the far fields
with the uniform strain and electric field, the constraint strain and the constraint electric field
inside the inclusion remain uniform. The problem in this paper is the special case of the above
general problem and it can be demonstrated that the result is the same as that of the above general
problem. Equations (22) and (23) are applicable to all over the domain D. Let us consider the case
when point x is inside the ellipsoidal inclusion, i.e. xe Q. When &° and E° are uniform, &' and E'
are also uniform. The superscript ‘I’ refers to the field values for interior points. Equations (22)
and (23) can be written as

(I+S85:C':C:e=e"+85:C " :(e")"-F (24)
(i+s k" k) E'=E —s-k™'-e:¢ (25)

where
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1
S[j/cl = - 2J\ Cmnkl[G?m,nj(x _x/) + G_;ln,mi(x - x/)]dx/ (26)
Q
is the Eshelby’s tensor of the perfectly elastic inclusion problem (Mura, 1987) and
Sij = J kij??m(x_x/)dx/ (27)
Q

is the Eshelby’s tensor of the perfectly dielectric inclusion problem (Fan and Qin, 1995). Where 1
and 7 are four-order and two-order unit tensors, respectively. (+) ' represents the inverse of the
indicated quantity.

From eqns (24) and (25), we can obtain the relations among &°, E°, &' and E'

g =H" "+ A E°, E'=AH:"+H#"E° (28)
where

H—(U+a-B) A, #*=U+a-B) ':a-B (29a)

H = (B a) " BiA, A =(i+B:a) B (29b)
and

A=(I+S8:C":C°)", B=(i+s k' k%" (30a)

a=A:S:C":(e")’, B=B-s-k'-e* (30b)

where A is the strain concentration-tensor of the perfectly elastic inclusion problem and B is the
electric field concentration-tensor of the perfectly dielectric inclusion problem. Equations (29a)
can also be written as

H = Ata- AP, H=a A (29¢)

Equations (29), (30) are the relations among the electroelastic Eshelby’s tensors, the perfectly
elastic Eshelby’s tensors and the perfectly dielectric Eshelby’s tensors. Equations (28) are the
closed-form solutions of the constraint strain field and the constraint electric field inside the
inclusion. Since the perfectly elastic Eshelby’s tensors and the perfectly dielectric Eshelby’s tensors
have been obtained already by means of theory of elasticity and electrodynamics, respectively, the
closed-form electroelastic Eshelby’s tensors of a piezoelectric ellipsoidal inclusion in an infinite
non-piezoelectric matrix can be determined easily.

It is known from the above equations that the most important parameters are « and # in the
electromechanical coupling problem. a, three-order tensor whose dimension is m/V, is related to
the elastic properties of the inclusion and the matrix, the piezoelectric property and the shape of
the inclusion. B, three-order tensor whose dimension is V/m, is concerned with the dielectric
properties of the inclusion and the matrix, the piezoelectric property and the shape of the inclusion.

When the inclusion material is non-piezoelectric, i.e. e* = 0, #"', and #* become A and B,
respectively and #? and #° are zero. Now, the problem is separated to be two problems of the
perfectly elastic inhomogeneous inclusion and the perfectly dielectric inhomogeneous inclusion. If
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the material is homogeneous and non-piezoelectric, # ' and #* become four-order and two-order
unit tensors, I and i, respectively.

It should be emphasized that the perfectly elastic and the perfectly dielectric Eshelby’s tensors
in eqns (29), (30) are relative only to the properties of the matrix, not to those of the inclusion.
Generally, since the matrix is isotropic, many problems can be greatly simplified.

3. A unified model for multiphase piezocomposites with non-piezoelectric matrix and
piezoelectric ellipsoidal inclusions

Budiansky (1965) established the energy-equivalence framework for composite materials, but
the analysis is limited only to the self-consistent method. Huang et al. (1995) developed a unified
energy approach based on the Budiansky’s energy-equivalence framework to be suitable for several
micromechanics models of composite materials, such as the dilute solution, self-consistent method,
generalized self-consistent method, and Mori-Tanaka’s method. A unified energy approach which
can be used in piezocomposites is developed in this paper.

Consider a large cube of a multiphase piezocomposite composed of a coherent non-piezoelectric
mixture of several piezoelectric materials. The spatial distributions of the phases are assumed to
be such that the piezocomposite is homogeneous. There are total of N phases of piezoelectric
inclusions embedded in the non-piezoelectric matrix. The constitutive equations in the inclusions
and the matrix are equations (1)—(4), but the material constants in the »-th inclusion should be
replaced by C™, ™, k™ (n = 1, ..., N). The superscript ‘n’ refers to the material constants of the

n-phase. The volume concentrations of the individual phases and the matrix are f, (n = 1,...,N)
and
N
=% fu
n=1
respectively. The piezocomposite can be characterized by the following constitutive relations
6=C:¢e— (" E (31)
D=é¢¢+k E (32)

To determine C, é and k, apply a uniform strain ¢° and a uniform electric field E° to the surface
of the cube of the piezocomposite. So the boundary conditions can be expressed by the following
form

u(S)y=¢"+x, ¢S)=—E"-x (33)

where x is the Cartesian coordinate system and S is the surface of the cube. When the independent
variables are the strain and the electric field, the energy function should be electric Gibbs’ energy
which can be defined by (Lines and Glass, 1977)

Y(e,E) = 9' (s, E)— %" (e, E) (34)

where
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G' (e, E) :21VJ ¢:0(e, E)dV (35)
% (s, E) :211/J E-D(e, E)dV (36)

and V is the total volume of the piezocomposite.
For 4'(g, E), we have

v L] v L] v s .
= § 1€ Xty AS = 8%# ;X1 dS = 8(2,,[ (0;%,,) .. dV
S S 174

= SﬁnJ\ O',,Xm,,dVZ 8?,”\[ 0-1]5)171dV = EgJ\ 6,/dV (37)
v Sy v

where n is the outward unit normal on the surface S of the cube. The strain—displacement relation,
&; = (u;;+u;;)/2, symmetry of the stress, o,; = g, equilibrium of stress, g,;; = 0, the boundary
condition (33) and the divergence theorem are used in eqn (37).
For identity, the stress ¢ is decomposed as
6=C:g+(6—C:¢) (38)

where C is the elastic moduli tensor of the matrix, and ¢ is the strain in various phases and is thus
non-uniform in volume. %' (e, E) is then

2V%' (e, E) =30:C:J

V

st+s°:J(a—C:s)dV (39)
V
The first integral can be rearranged to

1 1
e dV =5 | (e, +u)dV =S5O (wen +un)dS
14 2 v 2 S

1 1
= 2§ (&2, X1+ e x,n,)dS = 2(82,“ § x,,n,dS+¢e) § X, 1 dS)
S S S

— l 0 0 _ l 0 0 _ o0
- Elem xm,/ d V+ Ein xn,k d V - (8kn15m/ + Ein 5l1k) d V = & V (40)
2 V Vv 2 V

The integrated in the second integral is zero in the matrix because of the matrix constitutive eqn
(3). Thus, the second integral becomes
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N N
ZJ (6" —C:e)dV =Y J [C™ 6" —(e™)T+ E™ —C:"]dV
n=1 v, v,

n=1

N N
= Z (C"')—C) :J eMdy— Z (e(n))T.J E™ 4V
n=1 v, n=1 v,
N —
— Z fn[(g(n) - g™ —e(”))T'E(”)]V (41)
n=1

where V, = £,V is the total volume of the n-phase and ¢ = C"” —C. 8" = [, ¢” dV/V, and
E™ = [ E” dV|V, are the average strain and the average electric field in the n-th phase, respec-
tively. The constitutive eqn (1) is used in the n-th phases (n = 1,..., N). 4'(¢, E) now becomes

1 N _
@l (8, E) = 2{80 cC:g’+¢°: Z f,;[(g(") Sg) (e(n))T. E(")} (42)
n=1

For %*(¢, E), we have

2V%* (e, E) =J

Vv

D,‘Eide _J\

vV

D, dV = —J

vV

(D), dV = —§ Db dS

= § Di(_E)?lxm)ni dS = E21§ Dixmni dS = Eg,{ (Dixm),idV
N N 14

=E21J D,-x,,,w,-dV=E315m,f D,deEﬁ’J D;dV (43)
v Vv V
In the derivation of eqn (43), the relation E; = —¢, equilibrium of electric displacement,

D;; = 0, boundary condition (33) and divergence theorem are used.
The D can be decomposed as

D=k -E+(D—k-E) (44)

where k is the dielectric permittivity of the matrix and E is the electric field in various phases and
is thus non-uniform in volume. %*(g, E) is then

2V%2(3,E):E°-k-J

V

EdV+E°'J(D—k'E)dV (45)
V
The first integral can be rearranged to

J Ede= _J\ ¢,de: _§ ¢nmdS= _§(_E2xk)nmdS: E2§ xknmdS
1% Vv S S S

=E,°J xk’dezE,?éka dv=E)V (46)
V

Vv
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The integration in the second integral is zero in the matrix because of the matrix constitutive
eqn (4). Thus, the second integral becomes

N N
z J (D(”) —k- E(”)) dVv = Z J (e(”) -e™ —I—k(") cEW _ k- E("))dV
Vy Vi

n=1 n=1

N N
=y e(”):J & dV+ Z(k(”)—k)'J E®dV
Va n=1 Va

n=1 n=
N —
= Z fn [e(") CEO L. E(")] v 47)
n=1

where 4" = k™ —k and the constitutive relation (2) are used in the n-th phase (n = 1,..., N).
4% (e, E) becomes

n=

1 N _
gz(s’m — 2{E0 .k.EO —I—EO . Z fn[%(n) .E(n) —l—e(”) :g(n)]} (48)
n=1
Now %(g, E) can be obtained by 4'(e, E) and %°(e, E) as follows

1 N _
4(e, E) = 2{30 1Cie’ 4" ) [ [ 8 — (") - E™]
n=1

N
—E°k-E°—E°. zjf”[%/(n) 'E_(")—i—e(") :g(n)]} (49)
n=1

According to the constitutive equations (31) and (32), the electric Gibbs’ energy of the piezo-
composite can be given exactly as

1 ~ -
4@ E) 25{801C:s°—2E"-é:a°—E°-k-EO} (50)

A comparison between eqns (49) and (50) leads to

e :Cig"—2E"6:8°—E"k-E°=¢:C:¢"—E° k-E°
N N

+¢°: Z fn[(g(n) g _(e(n))T. E'(n)] _E°- Z Jf”[%‘(") < EO™ +e® :g(n)] (51)
n=1 n=1

It should be emphasized that eqn (51) is exact presentations of energy equivalence. The approxi-

mation nature of various approaches, such as the dilute solution and the Mori—-Tanaka’s method,

comes solely from the evaluation of the average strains, £, and the average electric field E", for

each individual phase. Once a method for the evaluation of E” and E™ are chosen, there exists a

linear relationship among 8", £®, & and E°, i.e.

B = U e N OB, B = g0 4 90 (52)

where the tensors .#Z™, 4™, 2™ and 2" depend not only on the n-th phase and the matrix, but
also on the method used. Substitution of eqn (52) into (51) leads to
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N
e :C:e"—2E 8" —E k-E° =¢: {C+ IWAIGE :,/%<">—(e<">)T~g><">]}:s°
n=1

N
—E°. { Z fn[%f(n) «p _ ((g(n) . J‘/(n))T+ (Q(”))T- e™ +e<;z) :%(n)]} g0
n=1

N
—E°. {k-l— Z f;,[e(n) AL, _|_%(n) ',JQ(")]}'EO (53)
n=1
Because &” and E° are arbitrary, the C, € and k can be obtained as
_ N
C=C+) fosym[€" U™ — (") 2"] (54)
n=1
_ N
k=k+) f,sym[e®™: /" 44" 92"] (55)
n=1
1 N
é = E Z fn [%/(n) P _ ((g(ﬂ) : JV(”))T+ (g(/ﬂ)T ce™ —i—e(”) : %(n)] (56)
n=1

where ‘sym A’ represents the symmetry part of A4, i.e. sym 4 = (4,4 Awi) /2.

Now, the analytical solutions of the effective electroelastic moduli of the piezocomposites are
obtained. It is known from the above equations that the solutions can be expressed by the material
constants of the inclusions C™, ™, k™, the material constants of the matrix C, k, the Eshelby’s
tensors of the perfectly elastic inclusion problem S$™, the Eshelby’s tensors of the perfectly dielectric
inclusion problem, s, and the volume concentrations of the individual phase f, (n = 1,..., N).
Since $™ and s™ were obtained by means of the perfectly inclusion problem and the perfectly
dielectric inclusion problem, respectively, the analytical solutions of the effective electroelastic
moduli of the piezocomposites can be gained conveniently.

4. The dilute solution and the Mori-Tanaka’s method for piezocomposites
4.1. The dilute solution or the non-interacting solution

The average strain and electric field in the dilute solution or the non-interacting solution is
approximated by the constraint strain and the constraint electric field that would occur in an
isolated piezoelectric inclusion embedded in an infinite non-piezoelectric matrix, whose closed-
form solutions can be expressed by equations (28)—(30). When the interaction among the inclusions
is not considered, .#", /"™ 2™ and 2 are given by

MWD = %l(n)’ N = %Z(n)’ P — %3(@’ 90 — ) (57)

where ' 2 43" and #*™ are electroelastic Eshelby’s tensors of the n-th inclusion in an
infinite non-piezoelectric matrix and can be determined by eqn (29). Substitution of eqn (57)
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into (54)—(56) gives the effective electroelastic moduli of the multiphase piezocomposites with
piezoelectric ellipsoidal inclusions by means of the dilute solution.

4.2. The Mori—Tanaka’s method

The Mori-Tanaka’s method is shown in this section to correspond to one special way of evaluating
the average strain and electric fields of inclusions and thus to have a clear physical description, and to
fall into the Budiansky’s (1965) energy-equivalence framework, or eqn (51). Details of the Mori—
Tanaka’s method can be found in Weng (1984) and Benveniste (1987), while a quick derivation for
the Mori—Tanaka’s method based on the physical description is provided in this section.

The aim of the Mori-Tanaka’s method is to account for interactions among inclusions better
than the dilute solution. In this method, the inclusions are embedded in an infinite matrix and the
matrix is subjected to the average matrix strain, &”, and the average matrix electric field, £”, in the
composite system rather than the applied strain, &°, and electric field E°. The average matrix strain
z" and electric field £ reasonably characterize the interaction among inclusions because each
inclusion in the composite material is surrounded by its adjacent matrix and is matched with
neighboring inclusions and corresponding matrices through the average matrix strain & and
electric field £™. Hence, the n-th inclusion strain and electric field are obtained by replacing the
applied strain ¢° and electric field E°, in the dilute solution, eqns (28), with the average matrix
strain, &, and the average electric field £, i.e.

8(n) — %l(n) :gr7z+%2(iz) . E_'m, E(n) — %3(@ L _|_%4(n) . E_‘m (58)
where
1 _ 1
&= (e, = — | edV, E"=<E>, —— | EdV (59)
Vm Vin I/’n m

where V,, is the total volume of the matrix. From the definition of the average strain and electric
field, one has

n=1

2 = (o). =VJ st:lVJ st+1V§J sdV = [1— iﬁ}@%ﬁ ims» (60)

E' = (E>, =11/J EdV:Il/J EdV+Il/§ J EdV = [1— iﬁl<E>m+ ifn<E>n

(61)

In the derivation of the above equations, the relations (40), (46), (59) and (78) are used. It is
demonstrated that if a linear piezoelectric ellipsoidal inclusion in an infinite linear non-piezoelectric
matrix is subjected to the uniform remote strain, ¢°, and electric field, E°, the constraint strain and
electric field inside the inclusion remain uniform. So, one has

(&), =", (E),=E" (62)

Substitution of equations (58), (59) and (62) into (60) and (61), gives
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SOZHI:(-‘:’”+H2'E_W, E0:H3:§m+H4'E_m (63)
where
N N
H =1-) fl-x"'"], H> =) fA>" (64a)
n=1 n=1
N N
H =) £ H =i-) fli—-#*"] (64b)
n=1 n=1
From equations (63), one can obtain
' =M:e"+N-E°, F"=P:"+Q-E° (65)
where
M=[H—-H-H) "' -H]"'", N=-M:H*-(H")"! (66a)
P=—-HY""H M, Q=MH)"[i—H:N] (66b)
Substitution of equations (65) into (58) gives the average strain 8" and electric field E™ as
T =" = 4"+ N E° (67)
E" = EM = 2™ . 4 9™ . E° (68)
where
M = A MAAHP P, N = NF AP Q (69a)
PO = A M+ AP, 9 = N+ A Q (69b)

Substitution of equations (29), (30) and (69) into (54)—(56) gives the effective electroelastic
moduli of the multiphase piezocomposites with piezoelectric ellipsoidal inclusions by means of the
Mori-Tanaka’s method.

5. Comparison between predicted and experimental results

Chan and Unsworth (1989) gave the experimental results of 1-3 PZT-7A/Araldite D pie-
zocomposite and Furukawa et al. (1978) obtained the experimental results of 0-3 PZT-5A/Epoxy
piezocomposites. In Appendix A and Appendix B, the closed-form solutions of the effective
electroelastic moduli of the 1-3 and 0-3 piezocomposites shown in Fig. 1 are given. The exper-
imental results and the theoretical curves calculated by the closed-form solutions are plotted in
Fig. 2 and Fig. 3, while 1-3 piezocomposite has only the cylindrical inclusion aligned in the
positive direction of 3-axis. The electroelastic moduli of PZT-7A and PZT-5A used in subsequent
computations are obtained from Chan and Unsworth (1989), Furukawa et al. (1978), Jaffe (1971)
and Dunn and Taya (1993), and the parameters are given in Table 1 where the well-known two
types of index notations have been adopted.

The parameters M, k and d in Fig. 2 (c)—(e) and Fig. 3 are elastic compliance moduli, dielectric
permittivity and charge constants, respectively, which can be determined by the following equations
(Lines and Glass, 1977)
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(b)

Fig. 1. (a) The 1-3 piezocomposite with two kinds of transversely isotropic piezoelectric cylindrical inclusions. (b) The
0-3 piezocomposite with transversely isotropic piezoelectric spherical inclusion.
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Fig. 2. Experimental verification of the variation of relative electroelastic moduli of piezocomposites with unidirectional
transversely isotropic cylindrical inclusion with volume fraction of ceramic and the experimental values are from Chan
et al. (1989). — theoretical results, ® experimental results.

0.0

M=)"", d=é&:M, k=k+d:(&" (70)
where C, ¢ and k are obtained from equations (54)—(56).
The parameters k, and k, in Fig. 2 (a)—(b) are the thickness coupling constant and the planar
coupling constant, respectively, which can be calculated as follows (Jaffe, 1971)

/ 2(ds1,)? . B— Ak,

k:

» (71)

kys(My1 +M,\5,) IZQ/I—AZN/I—kﬁ

where
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Fig. 3. Experimental verification of the variation of relative electroelastic moduli of piezocomposites with transversely
isotropic spherical inclusion with volume fraction of ceramic and the experimental values come from Furukawa et al.
(1976). — theoretical results, ® experimental results.

Table 1
Electroelastic material properties
Cy Cp Cis Cs; Cu €31 €33 kessfkeo*
(GPa) (GPa) (GPa) (GPa) (GPa) (C/m?) (C/m?)
PZT-7A 148 76.2 74.2 131 254 —-2.1 9.5 235
PZT-5A 121 75.4 75.2 111 21.1 —54 158 830
Araldite D 8.0 4.4 4.4 8.0 1.8 0 0 4.0
Epoxy 8.0 4.4 4.4 8.0 1.8 0 0 4.2
*ky = 8.85x 107" C/Vm™.
g = 2(M, 133)2 B— / (d333)2 (72)
M3333(M1111—M1122)’ k33 M 335

Figures 2 and 3 show that the theoretical curves calculated by means of the Mori-Tanaka’s
method agree quite well with the experimental values, but the theoretical curves obtained by the
dilute solution agree well with the experimental values only when the volume fraction of the
ceramic inclusion is smaller than 0.3.

6. The analysis of the 1-3 piezocomposites with two kinds of transversely isotropic piezoelectric

cylindrical inclusions

In this section, it is analyzed in detail for the 1-3 piezocomposites with two kinds of transversely
isotropic piezoelectric cylindrical inclusions shown in Fig. 1(a), in which one phase is in the positive
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Fig. 4. Variations of effective electroelastic moduli of 1-3 piezocomposite of two kinds of transversely isotropic cylindrical
inclusions in (e, E) space with f, and C,.

direction of 3-axis with a volume fraction /' and the other phase is in the negative direction of the
3-axis with a volume fraction f~. The variations of the effective electroelastic properties of this
kind of the piezocomposite calculated by the Mori-Tanaka’s method with f;, and C,are shown in

Figs 4-7. f, is the total volume fraction, i.e. f, = f "4/, and C,= f~/f;. Thus, /" and f~ can be
expressed by f, and C,as follows
fr=0=Cfo, [T =Cifo (73)

It can be shown from the closed-form solutions of the effective electroelastic moduli of this kind
of piezocomposite and from Figs 4-7 that
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Except C,3;; and M 5, the other components of elastic moduli € and elastic compliance moduli
M do not vary with C,. In other words C.s1; and M3, depend not only on elastic properties but
also on piezoelectric and dielectric properties of the inclusions and matrix. The other components
of C and M depend only on elastic properties of the inclusions and the matrix.

¢ and d are zero when C,=0.51e. f* =f". In this case, the composite does not have any
electric—mechanical coupling.

k,, and k;; reach their greatest values at f; = 1 and C,=0.5. k,, and ks; approach to their
greatest values when f, = 1 and C;,= 0 or C, = 1.

k, reaches its greatest value when f,1 and C,= 0 or C,= 1 and its smallest one when f, = 1
and C, = 0.5. k, approaches to its smallest value while f, = 1 and C, = 0.5 and its greatest one
while f, is about 0.8 and C,= 0 or C, = 1.
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7. Conclusions

In this paper, the closed-form solutions of the electroelastic Eshelby’s tensors of a piezoelectric
ellipsoidal inclusion in an infinite non-piezoelectric matrix are obtained via the Green’s function
technique. Based on the generalized Budiansky’s energy-equivalence framework and the closed-
form solutions of the electroelastic Eshelby’s tensors, a unified model for multiphase pie-
zocomposites of non-piezoelectric matrix and piezoelectric inclusions has been set up. The unified
model can describe the multiphase piezocomposites with different connectivities. The closed-form
solutions of the effective electroelastic moduli of piezocomposites are also obtained. The relations
can be expressed by the material constants of the inclusions C*, ¢™, k™, the material constants
of the matrix C, k, the Eshelby’s tensors of the perfectly elastic inclusion problem S, the Eshelby’s
tensors of the perfectly dielectric inclusion problem, s, and the volume concentrations of the
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1.0 0.0
Fig. 5—continued.

individual phase f, (n = 1,..., N). Since S® and s can be obtained by means of the perfectly
elastic inclusion problem and the perfectly dielectric inclusion problem, respectively, the closed-
form solutions of the effective electroelastic moduli of the piezocomposites can be gained
conveniently. The results in this paper can be used to analyze and design the multiphase piezo-
composites.

Appendix A: The closed-form solutions of the effective moduli of the 1-3 piezocomposite with
two kinds of transversely isotropic piezoelectric cylindrical inclusions and non-piezoelectric
matrix

As an important example, the 1-3 piezocomposite with two kinds of piezoelectric cylindrical
inclusions shown in Fig. 1(a) is considered in detail. In which one phase is aligned in the positive
direction of 3-axis and another phase is in the negative direction of 3-axis. The closed-form
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Fig. 6. Variations of d, and ¢, with £, and C,. Where d, = dyy3+2d;,, and &, = &35+ 283,

relations of the effective electroelastic moduli of this kind of piezocomposite are given. It is assumed

that the piezoelectric inclusions are transversely isotropic and the matrix is isotropic.
For the inclusion, its non-zero material constants are

1
% (% * % * % _ (% % _ (% *
Chi = C5,, Clias = Chhis, Chiss, Clys = (oo, C1212—2(C1111—C1122)
% _ % * % %
€311 = €322, €333, €713 = €723,

b J— S *
kll - k223 k33
where 3-axis is the symmetric axis.

(AD)
The material constants of the matrix are
1 C1122
Col=———— 1I,,— 0,0, ki = ko; A2
o Cllll_CIIZZ o (Cllll_C1122)(Cllll+2C1122) M ! ! ( )

In order to simplify the equations, several parameters are introduced by

2727



B. Jiang et al./International Journal of Solids and Structures 36 (1999) 2707-2733

2728
0.5
0.4
0.3
& 0.2
0.1 7 ;’/
‘@’0{'],’//,”///
0.2 N
0 \w,,,/,,/
4 \ 1.0
06 (/
0.8

1.0 0.0

1.00.0
Fig. 7. Variations of planar coupling constant k, and thickness coupling constant k, with f; and C,

. Chhs by = CS333 (A3)

b] :C(l)lll’ b2 :C(l)122, b3 :C(l)l33, b4:C(1)313’ b5 _ , _
Cllll Cllll Cll]l Cllll Cllll Cll]l
Ciias kY, k3 (ef15)° (e¥11)’
a, =, =7, C=7, hh=—""— hy=——"71- (A4)
! Cllll : kll ? kll : kllCllll ? kllCllll
where
C'=C*-C, k'=k*—k (A9)
Appendix Al The dilute solution or non-interaction solution
The non-zero components of C are
= = 2fo(by +b>)
Cihin+C =C l+a+—F—7F—— Alla
1111 1122 1111{ a, 2+b1+b2 ( )
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= = afo(1—a,) (b, —b,)
C —-C =C 1— All
1111 1122 1111{ a1+4(1—a1)+(3—a1)(b1—b2) ( b)
_ 2bh3
Ciz33 = Cyyypy {l‘f‘fo |:b6_2+b13—|—bz:|} (Allc)
_ _ fob
Ciiss = Cooss :Cllll{al“‘z_'_;lj_bz (Al1d)
- = _ 1 Jolhy +2+ci)bs]
Cizi3 = Cospz = Cllll(l_al){z +h1 FCte)(1—a,+by) (Alle)
C1212 - Cllll(l_al){z + 2(1_al)+(3_al)b5}
C_ijkl = C_jikl = C_i/lk = C_/clij (AHf)
The non-zero components of k are
r r 2fo[h +(1—a, +by4)c ]
ki, =k, =k
=K 11{1+h1+(2+cl)(1—a1+b4) (Al2a)
_ 2h,
k3s = ki, {1 +/o [Cz + 2—H71:Fl72:|} (AI2b)
The non-zero components of € are
_ 2(/" —f ) —ay)ets
T8 T Qe (- +h) (Al
) _ 207 —f et
€311 = €320 = W (AI3b)
2bye¥
ey =(f" _f)<e>3k33 — 2+1;11]bz>

where f, is the total volume fraction of the piezoelectric inclusions; f* and f~ are the volume
concentrations of the piezoelectric inclusion in the positive direction of 3-axis and in the negative
direction of 3-axis, respectively. The relation among themis f " +f~ = f,.
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Appendix AIl: The Mori-Tanaka’s method

The non-zero components of C are

B} i} 2o (b +b5)
Cl]]l+C1122:C1111{1+a1+ 0 : 2

2+ (1—fo)(by +by)

. 4, (1 —a,) (b, —bs) }
YT —a) + (1= £)B=a) (b —b2)]

2(1—fy)b3
S 24+ (1—£) (b +b2)}}

CII]I_C_II22 :Cllll{l_

63333 = C1111 {1+f0|:b6

Cii33=Cp33=C a, + 2fobs

1133 2233 1111 1 2+(1—f0)(b1+b2)

- 1 2f0bs }
C =C l—a)<-+

1212 1111( 1){2 2(1—a1)+(1—f0)(3—a1)b5

s = Cm](l_al){l+fo[2b4+(1—fog<hl +2b4+c1b4)]+8f*fﬂ~1}
2 C(fo) =8 f 4

C_zzzz = C_1111; C_2323 = C_1313
C_ijkl = C-jik/ = C_i/’lk = C_klij
where
Cq(fo) =2(1—a)+(1—fo)(c; +2by—cya;)+(1 _f0)2(51b4 +h)
A (I—a)h,

T+ Q+e)(—a, +by)

The non-zero components of k are

2f0[cl(l—a1)+(1—f0)(clb4+h1)]+16f+f/11}
C(f) =8 f

20 —f)h, 167 4,
2+ (1 —f£o)(by +b2) :|}

Ell :k_zz :kn{l"‘

ky; = ki, {1+<f0|:02+

where

C 2+4b,+b,

Ja

The non-components of & are

(Allla)

(AII1b)

(Alllc)

(AII1d)

(Allle)

(AIILf)

(Alllg)
(All1h)

(AIT1i)

(AIL1])

(AlIl2a)

(ATI2b)

(ATI2c)
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G —¢ :2(f+ —f )1 —ay)ets
B O A

_ 20/ —f7)edn
24 (1=fo) (b +b)

2(1—fo)bset,
24 (1—fo) (b +b2)}

€3 =¢€

ey =(f" —f){e’fn -

Appendix B: The closed-form solutions of the effective moduli of the piezocomposite with

transversely isotropic piezoelectric spherical inclusion
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(AlI3a)

(ATI3b)

(ATI3c)

As another important example, the 0-3 piezocomposite with transversely isotropic piezoelectric
spherical inclusion shown in Fig. 1(b) is considered in detail. The material constants are the same
as those in Appendix A, which can be expressed by eqns (A1)—(A6). The closed-form relations of

the effective electroelastic moduli of this kind of piezocomposite are given.
The non-zero components of C are:

_ - 1 2k, 3
Ciini+Ciian = Cllll{l"i_al +fQ|:15(1_a1)(b1 +b,)+(7—3a,)b, + C s 5}}
0 1111

_ _ 15(b, —b,)
C1111 _C1122 =(1_a1)C1111 {1 +f15(1—a1)+2(14—;1)(b1 —bz)}

g g ! ki
Ciizz = Cyasz = Cllll{al +fQ|:15(1—a1)b3+(1+a1)b0+lezgf}}
0 111

= 1 kll‘P%
Ciz33 = Ciypy 1+f§ 15(1—a;)bs+(6—4a,)by,+ C 0
0 1111

. _ 1 30
C1313 = C2323 :2(1_a1)C1111{1 +f5[hl +(3+Cl)b4]}

Cos = M=)y A141 300
212 = HU T d) 15(1—a,)+2(4—a,)bs

Ciikl = Cjikl = Ci/lk = Cklij

The non-zero components of k are:

(Bla)

(B1b)

(Blc)

(B1d)

(Ble)

(BIf)
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_ _ 3 - 3Q
ki =ky, :k11|:1+3f<1—2))0>:|, k33 :k11|:1+3/<1—90>:| (B2)

The non-zero components of & are:

3k
€113 = €131 = €333 = €3y :f#(p] (B3a)
3k ki
ey =8 =f lé 27 Cy33 =f lé : (B3b)
where
ets
11
1
@y = 7[5(1 —a)(ey—2&y)—(7—3a,)e, +(1+a,)e,] (B4b)
11
1
P3 = 7[5(1 —a,)(ey+28,)—2(1+a,)e, +(6—4a,)e,] (B4c)
11
(UO == 15(1 —a1)+4(4—611)b4 (BSa)
w=4@4—a)h +(G+c)w, (B5b)
Q,=150—a,)+(©6—4a,)(b,+b,)+(7T—3a,)bs—4(1+a,)b; +§(4—al)b0 (B6a)
Q] = 7{15(1 —a1)€3+2(4—a1)[6é% +(€2 —261)60 +2(€1 +€2)€_0} (B6b)
9k Cii1y
Q - Ql +(3+62)QO (B6C)
and
by = (b, +by)bs—2b3 (B7a)
ey = e¥y3+2e%,, &, = e¥;;—efy (B7b)
e, = byely; —bye¥yy, ey =(by+by)es; —2bsed, (B7¢)
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