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Abstract

In this paper\ the closed!form solutions of the electroelastic Eshelby|s tensors of a piezoelectric ellipsoidal
inclusion in an in_nite non!piezoelectric matrix are obtained via the Green|s function technique[ Based on
the generalized Budiansky|s energy!equivalence framework and the closed!form solutions of the electroelastic
Eshelby|s tensors\ a uni_ed model for multiphase piezocomposites with the non!piezoelectric matrix and
piezoelectric inclusions is set up[ The closed!form solutions of the e}ective electroelastic moduli of pie!
zocomposites are also obtained[ The uni_ed model has a rigorous but simple form\ which can describe the
multiphase piezocomposites with di}erent connectivities\ such as 9Ð2\ 0Ð2\ 1Ð1\ 1Ð2\ 2Ð2 connectivities\ etc[
It can also describe the e}ects of non!interaction and interaction among the inclusions[ As examples\ the
closed!form solutions of the e}ective electroelastic moduli are given by means of the dilute solution for the
9Ð2 piezocomposite with transversely isotropic piezoelectric spherical inclusions and by means of the dilute
solution and the MoriÐTanaka|s method for the 0Ð2 piezocomposite with two kinds of transversely isotropic
piezoelectric cylindrical inclusions[ The predicted results are compared with experimental data\ which shows
that the theoretical curves calculated by means of the MoriÐTanaka|s method agree quite well with the
experimental values\ but the theoretical curves obtained by the dilute solution agree well with the exper!
imental values only when the volume fraction of the ceramic inclusion is less than 9[2[ The results in this
paper can be used to analyze and design the multiphase piezocomposites[ Þ 0888 Elsevier Science Ltd[ All
rights reserved[

0[ Introduction

With the development of information industry and the appearance of smart materials and smart
structures "Jiang et al[\ 0883#\ material science has entered a new era[ Conventional materials are
not able to satisfy modern engineering requirements[ Since piezocomposites provide material
properties superior to conventional piezoelectric materials\ piezocomposites have become attractive
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candidates for use in many _elds[ In the past few years\ much work has been done in the analysis
and prediction of the e}ective properties of piezocomposites based on mesomechanics[

The micromechanical characterization and analysis of piezocomposites were launched by the
Newnham et al[|s "0867# connectivity theory\ which is based on the combination of mechanics of
materials type parallel and series models[ These analyses were extended by Banno "0872# to
consider discontinuous reinforcement through a cubes approach[ A di}erent route was taken by
Smith and Auld "0880# in the analysis of continuous _ber!reinforced piezoelectric composites[ A
more rigorous treatment of the coupled electroelastic _elds in a piezoelectric concentric cylinder
geometry was performed by Grekov et al[ "0878#[ Benveniste "0881\ 0882a\ b\ 0883# obtained the
e}ective eigenstress and spontaneous for multiphase composites with the arbitrary phase geometry
and the e}ective properties for _brous piezocomposites based on the use of virtual work theorems[
But the closed!form solutions of the e}ective electroelastic properties for multiphase pie!
zocomposites with the arbitrary phase geometry have not been obtained yet[

Wang "0881# studied the problem via the Green|s function technique and obtained integral
expressions for the constraintÐstrain and constraintÐelectricÐ_eld of a spherical inclusion in an
in_nite piezoelectric matrix\ but the integral expressions are very complicated\ thus the closed!
form solutions of the constraintÐstrain and constraintÐelectricÐ_eld are too di.cult to obtain even
though the matrix is non!piezoelectric[ Although Wang "0881# gave the closed!form solutions of
the constraintÐstrain and constraintÐelectricÐ_eld of a transversely isotropic cylindrical inclusion
in an in_nite non!piezoelectric matrix and the dilute solutions of the e}ective electroelastic moduli
of 0Ð2 piezocomposites\ the solutions considered the interaction among inclusions were not
obtained[ Based on the contour integral representation of the Green|s function derived by Deeg
"0879#\ Dunn and Taya "0882a\ b# made a signi_cant contribution to the analysis of the e}ective
behavior of the piezocomposites when the interaction among reinforcements was considered\ but
the closed!form solutions of the e}ective electroelastic moduli of the piezocomposites with ellip!
soidal inclusions have not been given due to the fact that the electroelastic Eshelby|s tensors are
given by a complicated integral form[

From the view of application\ many piezocomposites are made up of piezoelectric inclusions
and the non!piezoelectric matrix[ For example\ the sensors made of piezoelectric materials\ which
are widely used in smart materials or smart structures "Jiang et al[\ 0883#\ are generally embedded
in a non!piezoelectric matrix in which the elastic _elds and the electric _elds are decoupled[ As
another example\ some kinds of very important materials\ such as relaxor ferroelectric materials\
are made up of a ferroelectric phase and a paraelectric phase\ which can be considered as composites
with the inclusions and matrix[ That is\ the inclusions are the ferroelectric phase that has elec!
tromechanical coupling behavior and the matrix is the paraelectric phase which has no elec!
tromechanical coupling behavior[ In this case\ the problem can be simpli_ed signi_cantly[

This paper describes a uni_ed model for multiphase piezocomposites with non!piezoelectric
matrix and piezoelectric ellipsoidal inclusions and obtains the closed!form solutions of the e}ective
electroelastic properties of this kind of piezocomposites[ The uni_ed model has a rigorous but
simple form\ which can describe the multiphase piezocomposites with di}erent connectivities\ such
as 9Ð2\ 0Ð2\ 1Ð1\ 1Ð2\ 2Ð2 connectivities\ etc[ It can also describe the non!interaction and interaction
among the inclusions[

The present paper is divided into _ve sections]

"0# The closed!form solutions of the electroelastic Eshelby|s tensors of a piezoelectric ellipsoidal
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inclusion in an in_nite non!piezoelectric matrix are obtained via a Green|s function technique[
"1# Based on the generalized Budiansky|s energy!equivalence framework "Budiansky\ 0854# and

the results of the section "0#\ a uni_ed model for the multiphase piezocomposites is set up and
the closed!form solutions of the e}ective electroelastic moduli of the multiphase pie!
zocomposites with ellipsoidal inclusions are given[

"2# The predicted results are compared with experimental data\ which shows that the theoretical
values agree quite well with the experimental ones[

"3# It is analyzed in detail for the 0Ð2 piezocomposite with two kinds of transversely isotropic
piezoelectric cylindrical inclusions\ in which one of the inclusions is aligned in the positive
direction and another is in the negative direction[

"4# In the appendices\ the closed!form solutions of the e}ective electroelastic moduli are given
by means of the dilute solution for the 9Ð2 piezocomposite with the transversely isotropic
piezoelectric spherical inclusion and by the dilute solution and the MoriÐTanaka|s method
for the 0Ð2 piezocomposite with two kinds of transversely isotropic piezoelectric cylindrical
inclusions[

1[ The single inclusion and inhomogeneity

There is a region V "the linear piezoelectric inclusion# in an in_nite homogeneous linear non!
piezoelectric medium D\ the far _elds are exposed with the uniform strain and electric _eld[ It is
asked what the elastic state and the electric _eld of the inclusion are[

We shall solve this problem with the help of the Green|s function technique[ The constitutive
equations for a linear piezoelectric inclusion is "Maugin\ 0877#

s � C� ] 9u¦"e�#T = 9f in V "0#

D � e� ] 9u−k� = 9f in V "1#

where C� is the elastic moduli tensor\ e� the piezoelectric moduli tensor and k� the dielectric
permittivity\ respectively[ The superscript {�| refers to the material properties of the piezoelectric
inclusion[ f and u are the electric potential and elastic displacement[ D and s are the electric
displacement and the elastic stress[ 9 is Laplacian operator and "eT#klp � epkl[ Tensors and vectors
are denoted by italic bold face letters\ inner products by the notation] a = x � aijxj and A ] a � Aijklakl\
and tensor products by notation] ab � aibj[

Bearing in mind that there is no electromechanical coupling in the matrix\ one has the constitutive
equations in the matrix as

s � C ] 9u in D−V "2#

D � −k = 9f in D−V "3#

where C and k are the elastic moduli tensor and the dielectric permittivity of the matrix[ Because
the matrix is non!piezoelectric\ we have e � 9[ By introducing the following characteristic function
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h"x# � 6
0 x $ V
9 otherwise

"4#

the elastic\ piezoelectric tensors and the dielectric permittivity of the inclusion can be written as

C� � C¦C>h"x#\ e� � e¦e>h"x# � e�h"x#\ k� � k¦k>h"x# "5#

where

C> � C�−C\ e> � e�−e � e�\ k> � k�−k "6#

From eqns "5#\ "6#\ the eqns "0#\ "2# and "1#\ "3# can be written as

s � C ] 9u¦ðC> ] 9u¦"e>#T = 9fŁh"x# in D "7#

D � −k = 9f¦ðe > ] 9u−k> = 9fŁh"x# in D "8#

If the free charges and body forces do not exist\ the equilibrium equations for both the inclusion
and the matrix are

9 = s � 9 "09#

9 = D � 9 "00#

Substitution of eqns "7# and "8# into eqns "09# and "00# yields

Cijkluk\lj � −ðC9
ijkluk\l¦e9

mijf\m#h"x#Ł\j "01#

kimf\mi � ð"e9
ikluk\l−k9

imf\m#h"x#Ł\i "02#

The right terms of eqns "01# and "02# can be regard as body forces and free charges which are
applied on the matrix[ Since the matrix is non!piezoelectric\ two Green|s functions Gu and Gf are
introduced as follows

CijklG
u
kp\lj"x−x?# � −dipd"x−x?# "03#

kimGf
\im"x−x?# � d"x−x?# "04#

The Green|s function in eqn "03# is that of the perfectly elastic problem which can be obtained
as follows "Mura\ 0876#

Gu
ij"x−x?# �"1p#−2g

¦�

−�

Nij"j#D−0"j# exp "ij ="x−x?## dj "05#

where Nij are cofactors of Kij\ D"j# is the determinant of Kij and Kik"j# � Cijkljjjl[
The Green|s function in eqn "04# is that of the perfectly dielectric problem which can be given

by "Fan\ 0884#

Gf"x−x?# � −"1p#−2g
¦�

−�

"kijjijj#−0 exp "ij ="x−x?## dj "06#

Equations "01# and "02# can be expressed by means of the Green|s functions in the forms
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up � u9
p¦g

¦�

−�

Gu
pi"x−x?#ð"C9

ijkluk\l¦e9
mijf\m#h"x?#Ł\j ? dx?

� u9
p¦gV

Gu
pi\j"x−x?#ðC9

ijkluk\l¦e9
mijf\mŁdx? "07#

f � f9¦g
¦�

−�

Gf"x−x?#ð"e9
ikluk\l−k9

ijf\j#h"x?#Ł\j ? dx?

� f9¦gV
Gf

\i "x−x?#ðe9
ikluk\l−k9

ijf\jŁdx? "08#

where u9
p and f9 are homogeneous solutions of eqns "01# and "02#[ In the derivation of eqns "07#

and "08#\ the properties of the characteristic function and the relations

Gu
pi\j?"x−x?# � −Gu

pi\j"x−x?# "19#

Gf
\i?"x−x?# � −Gf

\i "x−x?# "10#

are used[ By di}erentiating eqns "07# and "08#\ the equations of the elastic strain _eld and electric
_eld can be obtained in the form

oij �
0
1

"ui\ j¦uj\i# � o9
ij¦

0
1 gV

ðGu
im\nj"x−x?#¦Gu

jm\ni"x−x?#Ł×"C9
mnkluk\l−e9

pmnEp#dx? "11#

Ei � −f\i � E9
i −gV

Gf
\ji"x−x?#"e9

jkluk\l¦k9
jpEp#dx? "12#

In the derivation of eqns "11# and "12#\ Cijkluk\l � Cijklokl and Ei � −f\i are used[
Wang "0881#\ Chen "0882\ 0883#\ Dunn and Taya "0882a# demonstrated that if a linear pie!

zoelectric ellipsoidal inclusion in an in_nite linear piezoelectric matrix is subjected to the far _elds
with the uniform strain and electric _eld\ the constraint strain and the constraint electric _eld
inside the inclusion remain uniform[ The problem in this paper is the special case of the above
general problem and it can be demonstrated that the result is the same as that of the above general
problem[ Equations "11# and "12# are applicable to all over the domain D[ Let us consider the case
when point x is inside the ellipsoidal inclusion\ i[e[ x $ V[ When o9 and E9 are uniform\ oI and EI

are also uniform[ The superscript {I| refers to the _eld values for interior points[ Equations "11#
and "12# can be written as

"I¦S ] C−0 ] C9# ] oI � o9¦S ] C−0 ]"e9#T = EI "13#

"i¦s = k−0 = k9# = EI � E9−s = k−0 = e9 ] oI "14#

where
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Sijkl � −
0
1 gV

Cmnkl ðGu
im\nj"x−x?#¦Gu

jn\mi"x−x?#Łdx? "15#

is the Eshelby|s tensor of the perfectly elastic inclusion problem "Mura\ 0876# and

sij � gV
kmjG

f
\im"x−x?#dx? "16#

is the Eshelby|s tensor of the perfectly dielectric inclusion problem "Fan and Qin\ 0884#[ Where I
and i are four!order and two!order unit tensors\ respectively[ "=#−0 represents the inverse of the
indicated quantity[

From eqns "13# and "14#\ we can obtain the relations among o9\ E9\ oI and E I

oI � H0 ] o9¦H1 = E9\ E I � H2 ] o9¦H3 = E9 "17#

where

H0 �"I¦a = b#−0 ] A\ H1 �"I¦a = b#−0 ] a = B "18a#

H2 � −"i¦b ] a#−0 = b ] A\ H3 �"i¦b ] a#−0 = B "18b#

and

A �"I¦S ] C−0 ] C9#−0\ B �"i¦s = k−0 = k9#−0 "29a#

a � A ] S ] C−0 ]"e�#T\ b � B = s = k−0 = e� "29b#

where A is the strain concentration!tensor of the perfectly elastic inclusion problem and B is the
electric _eld concentration!tensor of the perfectly dielectric inclusion problem[ Equations "18a#
can also be written as

H0 � A¦a = H2\ H1 � a = H3 "18c#

Equations "18#\ "29# are the relations among the electroelastic Eshelby|s tensors\ the perfectly
elastic Eshelby|s tensors and the perfectly dielectric Eshelby|s tensors[ Equations "17# are the
closed!form solutions of the constraint strain _eld and the constraint electric _eld inside the
inclusion[ Since the perfectly elastic Eshelby|s tensors and the perfectly dielectric Eshelby|s tensors
have been obtained already by means of theory of elasticity and electrodynamics\ respectively\ the
closed!form electroelastic Eshelby|s tensors of a piezoelectric ellipsoidal inclusion in an in_nite
non!piezoelectric matrix can be determined easily[

It is known from the above equations that the most important parameters are a and b in the
electromechanical coupling problem[ a\ three!order tensor whose dimension is m:V\ is related to
the elastic properties of the inclusion and the matrix\ the piezoelectric property and the shape of
the inclusion[ b\ three!order tensor whose dimension is V:m\ is concerned with the dielectric
properties of the inclusion and the matrix\ the piezoelectric property and the shape of the inclusion[

When the inclusion material is non!piezoelectric\ i[e[ e� � 9\ H0\ and H3 become A and B\
respectively and H1 and H2 are zero[ Now\ the problem is separated to be two problems of the
perfectly elastic inhomogeneous inclusion and the perfectly dielectric inhomogeneous inclusion[ If
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the material is homogeneous and non!piezoelectric\ H0 and H3 become four!order and two!order
unit tensors\ I and i\ respectively[

It should be emphasized that the perfectly elastic and the perfectly dielectric Eshelby|s tensors
in eqns "18#\ "29# are relative only to the properties of the matrix\ not to those of the inclusion[
Generally\ since the matrix is isotropic\ many problems can be greatly simpli_ed[

2[ A uni_ed model for multiphase piezocomposites with non!piezoelectric matrix and

piezoelectric ellipsoidal inclusions

Budiansky "0854# established the energy!equivalence framework for composite materials\ but
the analysis is limited only to the self!consistent method[ Huang et al[ "0884# developed a uni_ed
energy approach based on the Budiansky|s energy!equivalence framework to be suitable for several
micromechanics models of composite materials\ such as the dilute solution\ self!consistent method\
generalized self!consistent method\ and MoriÐTanaka|s method[ A uni_ed energy approach which
can be used in piezocomposites is developed in this paper[

Consider a large cube of a multiphase piezocomposite composed of a coherent non!piezoelectric
mixture of several piezoelectric materials[ The spatial distributions of the phases are assumed to
be such that the piezocomposite is homogeneous[ There are total of N phases of piezoelectric
inclusions embedded in the non!piezoelectric matrix[ The constitutive equations in the inclusions
and the matrix are equations "0#Ð"3#\ but the material constants in the n!th inclusion should be
replaced by C"n#\ e"n#\ k"n# "n � 0\ [ [ [ \ N#[ The superscript {n| refers to the material constants of the
n!phase[ The volume concentrations of the individual phases and the matrix are fn "n � 0\ [ [ [ \ N#
and

0− s
N

n�0

fn\

respectively[ The piezocomposite can be characterized by the following constitutive relations

s � CÞ ] o−"e¹#T = E "20#

D � e¹ ] o¦k¹ = E "21#

To determine CÞ\ e¹ and k¹ \ apply a uniform strain o9 and a uniform electric _eld E9 to the surface
of the cube of the piezocomposite[ So the boundary conditions can be expressed by the following
form

u"S# � o9 = x\ f"S# � −E9 = x "22#

where x is the Cartesian coordinate system and S is the surface of the cube[ When the independent
variables are the strain and the electric _eld\ the energy function should be electric Gibbs| energy
which can be de_ned by "Lines and Glass\ 0866#

G"o\ E# � G0"o\ E#−G1"o\ E# "23#

where
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G0"o\ E# �
0

1V gV

o ] s"o\ E#dV "24#

G1"o\ E# �
0

1V gV

E = D"o\ E#dV "25#

and V is the total volume of the piezocomposite[
For G0"o\ E#\ we have

1VG0"o\ E# � gV

sijoij dV � gV

sijuj\i dV � gV

"sijuj#\i dV � GS
sijujni dS

� GS
sijo

9
jmxmni dS � o9

jm GS
sijxmni dS � o9

jm gV

"sijxm#\i dV

� o9
jm gV

sijxm\i dV � o9
jm gV

sijdmi dV � o9
ij gV

sij dV "26#

where n is the outward unit normal on the surface S of the cube[ The strainÐdisplacement relation\
oij �"ui\j¦uj\i#:1\ symmetry of the stress\ sij � sji\ equilibrium of stress\ sij\i � 9\ the boundary
condition "22# and the divergence theorem are used in eqn "26#[

For identity\ the stress s is decomposed as

s � C ] o¦"s−C ] o# "27#

where C is the elastic moduli tensor of the matrix\ and o is the strain in various phases and is thus
non!uniform in volume[ G0"o\ E# is then

1VG0"o\ E# � o9 ] C ] gV

o dV¦o9 ] gV

"s−C ] o#dV "28#

The _rst integral can be rearranged to

gV

okl dV �
0
1 gV

"uk\l¦ul\k#dV �
0
1 GS

"uknl¦ulnk#dS

�
0
1 GS

"o9
kmxmnl¦o9

lnxnnk#dS �
0
10o9

km GS
xmnl dS¦o9

ln GS
xnnk dS1

�
0
10o9

km gV

xm\l dV¦o9
ln gV

xn\k dV1�
0
1
"o9

kmdml¦o9
lndnk# gV

dV � o9
klV "39#

The integrated in the second integral is zero in the matrix because of the matrix constitutive eqn
"2#[ Thus\ the second integral becomes
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s
N

n�0 gVn

"s"n#−C ] o"n##dV � s
N

n�0 gVn

ðC"n# ] o"n#−"e"n##T = E"n#−C ] o"n#ŁdV

� s
N

n�0

"C"n#−C# ] gVn

o"n# dV− s
N

n�0

"e"n##T = gVn

E"n# dV

� s
N

n�0

fn ðC"n# ] o¹"n#−e"n##T = EÞ"n#ŁV "30#

where Vn � fnV is the total volume of the n!phase and C"n# � C"n#−C[ o¹
"n# � ÐVn

o"n# dV:Vn and
EÞ "n# � ÐVn

E"n# dV:Vn are the average strain and the average electric _eld in the n!th phase\ respec!
tively[ The constitutive eqn "0# is used in the n!th phases "n � 0\ [ [ [ \ N#[ G0"o\ E# now becomes

G0"o\ E# �
0
16o9 ] C ] o9¦o9 ] s

N

n�0

fn ðC"n# ] o¹"n#−"e"n##T = EÞ"n#7 "31#

For G1"o\ E#\ we have

1VG1"o\ E# � gV

DiEi dV � −gV

Dif\i dV � −gV

"Dif#\i dV � −GS
Difni dS

� GS
Di"−E9

mxm#ni dS � E9
m GS

Dixmni dS � E9
m gV

"Dixm#\i dV

� E9
m gV

Dixm\i dV � E9
mdmi gV

Di dV � E9
i gV

Di dV "32#

In the derivation of eqn "32#\ the relation Ei � −f\i\ equilibrium of electric displacement\
Di\i � 9\ boundary condition "22# and divergence theorem are used[

The D can be decomposed as

D � k = E¦"D−k = E# "33#

where k is the dielectric permittivity of the matrix and E is the electric _eld in various phases and
is thus non!uniform in volume[ G1"o\ E# is then

1VG1"o\ E# � E9 = k = gV

E dV¦E9 = gV

"D−k = E#dV "34#

The _rst integral can be rearranged to

gV

Em dV � −gV

f\m dV � −GS
fnm dS � −GS

"−E9
kxk#nm dS � E9

k GS
xknm dS

� E9
k gV

xk\m dV � E9
kdkm gV

dV � E9
mV "35#
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The integration in the second integral is zero in the matrix because of the matrix constitutive
eqn "3#[ Thus\ the second integral becomes

s
N

n�0 gVn

"D"n#−k = E"n## dV � s
N

n�0 gVn

"e"n# ] o"n#¦k"n# = E"n#−k = E"n##dV

� s
N

n�0

e"n# ] gVn

o"n# dV¦ s
N

n�0

"k"n#−k# = gVn

E"n# dV

� s
N

n�0

fn ðe"n# ] o¹"n#¦K"n# = EÞ"n#ŁV "36#

where K"n# � k"n#−k and the constitutive relation "1# are used in the n!th phase "n � 0\ [ [ [ \ N#[
G1"o\ E# becomes

G1"o\ E# �
0
16E9 = k = E9¦E9 = s

N

n�0

fn ðK"n# = EÞ"n#¦e"n# ] o¹"n#Ł7 "37#

Now G"o\ E# can be obtained by G0"o\ E# and G1"o\ E# as follows

G"o\ E# �
0
16o9 ] C ] o9¦o9 ] s

N

n�0

fn ðC"n# ] o¹"n#−"e"n##T = EÞ "n#Ł

−E9 = k = E9−E9 = s
N

n�0

fn ðK"n# = EÞ "n#¦e"n# ] o¹"n#Ł7 "38#

According to the constitutive equations "20# and "21#\ the electric Gibbs| energy of the piezo!
composite can be given exactly as

G"o\ E# �
0
1

"o9 ] CÞ ] o9−1E9 = e¹ ] o9−E9 = k¹ = E9# "49#

A comparison between eqns "38# and "49# leads to

o9 ] CÞ ] o9−1E9 = e¹ ] o9−E9 = k¹ = E9 � o9 ] C ] o9−E9 = k = E9

¦o9 ] s
N

n�0

fn ðC"n# ] o¹"n#−"e"n##T = EÞ"n#Ł−E9 = s
N

n�0

fn ðK"n# = EÞ"n#¦e"n# ] o¹"n#Ł "40#

It should be emphasized that eqn "40# is exact presentations of energy equivalence[ The approxi!
mation nature of various approaches\ such as the dilute solution and the MoriÐTanaka|s method\
comes solely from the evaluation of the average strains\ o¹

"n#\ and the average electric _eld EÞ"n#\ for
each individual phase[ Once a method for the evaluation of EÞ"n# and EÞ"n# are chosen\ there exists a
linear relationship among o¹

"n#\ EÞ"n#\ o9 and E9\ i[e[

o¹
"n# � M"n# ] o9¦N"n# = E9\ EÞ"n# � P"n# ] o9¦Q"n# = E9 "41#

where the tensors M"n#\ N"n#\ P"n# and Q"n# depend not only on the n!th phase and the matrix\ but
also on the method used[ Substitution of eqn "41# into "40# leads to
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o9 ] CÞ ] o9−1E9 = e¹ ] o9−E9 = k = E9 � o9 ] 6C¦ s
N

n�0

fn ðC"n# ] M"n#−"e"n##T = P"n#Ł7 ] o9

−E9 = 6 s
N

n�0

fn ðK"n# = P"n#−"C"n# ] N"n##T¦"Q"n##T = e"n#¦e"n# ] M"n#Ł7 ] o9

−E9 = 6k¦ s
N

n�0

fn ðe"n# ] N"n#¦K"n# = Q"n#Ł7 = E9 "42#

Because o9 and E9 are arbitrary\ the CÞ\ e¹ and k¹ can be obtained as

CÞ � C¦ s
N

n�0

fn sym ðC"n# ] M"n#−"e"n##T = P"n#Ł "43#

k¹ � k¦ s
N

n�0

fn sym ðe"n# ] N"n#¦K"n# = Q"n#Ł "44#

e¹ �
0
1

s
N

n�0

fn ðK"n# = P"n#−"C"n# ] N"n##T¦"Q"n##T = e"n#¦e"n# ] M"n#Ł "45#

where {sym A| represents the symmetry part of A\ i[e[ sym A �"Aijkl¦Aklij#:1[
Now\ the analytical solutions of the e}ective electroelastic moduli of the piezocomposites are

obtained[ It is known from the above equations that the solutions can be expressed by the material
constants of the inclusions C"n#\ e"n#\ k"n#\ the material constants of the matrix C\ k\ the Eshelby|s
tensors of the perfectly elastic inclusion problem S"n#\ the Eshelby|s tensors of the perfectly dielectric
inclusion problem\ s"n#\ and the volume concentrations of the individual phase fn "n � 0\ [ [ [ \ N#[
Since S"n# and s"n# were obtained by means of the perfectly inclusion problem and the perfectly
dielectric inclusion problem\ respectively\ the analytical solutions of the e}ective electroelastic
moduli of the piezocomposites can be gained conveniently[

3[ The dilute solution and the MoriÐTanaka|s method for piezocomposites

3[0[ The dilute solution or the non!interactin` solution

The average strain and electric _eld in the dilute solution or the non!interacting solution is
approximated by the constraint strain and the constraint electric _eld that would occur in an
isolated piezoelectric inclusion embedded in an in_nite non!piezoelectric matrix\ whose closed!
form solutions can be expressed by equations "17#Ð"29#[ When the interaction among the inclusions
is not considered\ M"n#\ N"n#\ P"n# and Q"n# are given by

M"n# � H0"n#\ N"n# � H1"n#\ P"n# � H2"n#\ Q"n# � H3"n# "46#

where H0"n#\ H1"n#\ H2"n# and H3"n# are electroelastic Eshelby|s tensors of the n!th inclusion in an
in_nite non!piezoelectric matrix and can be determined by eqn "18#[ Substitution of eqn "46#
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into "43#Ð"45# gives the e}ective electroelastic moduli of the multiphase piezocomposites with
piezoelectric ellipsoidal inclusions by means of the dilute solution[

3[1[ The MoriÐTanaka|s method

The MoriÐTanaka|s method is shown in this section to correspond to one special way of evaluating
the average strain and electric _elds of inclusions and thus to have a clear physical description\ and to
fall into the Budiansky|s "0854# energy!equivalence framework\ or eqn "40#[ Details of the MoriÐ
Tanaka|s method can be found in Weng "0873# and Benveniste "0876#\ while a quick derivation for
the MoriÐTanaka|s method based on the physical description is provided in this section[

The aim of the MoriÐTanaka|s method is to account for interactions among inclusions better
than the dilute solution[ In this method\ the inclusions are embedded in an in_nite matrix and the
matrix is subjected to the average matrix strain\ o¹

m\ and the average matrix electric _eld\ EÞm\ in the
composite system rather than the applied strain\ o9\ and electric _eld E9[ The average matrix strain
o¹
m and electric _eld EÞm reasonably characterize the interaction among inclusions because each

inclusion in the composite material is surrounded by its adjacent matrix and is matched with
neighboring inclusions and corresponding matrices through the average matrix strain o¹

m and
electric _eld EÞm[ Hence\ the n!th inclusion strain and electric _eld are obtained by replacing the
applied strain o9 and electric _eld E9\ in the dilute solution\ eqns "17#\ with the average matrix
strain\ o¹

m\ and the average electric _eld EÞm\ i[e[

o"n# � H0"n# ] o¹m¦H1"n# = EÞm\ E"n# � H2"n# ] o¹m¦H3"n# = EÞm "47#

where

o¹
m � ðoŁm �

0
Vm gVm

o dV\ EÞm � ðEŁm �
0

Vm gVm

E dV "48#

where Vm is the total volume of the matrix[ From the de_nition of the average strain and electric
_eld\ one has

o9 � ðoŁc �
0
V gV

o dV �
0
V gVm

o dV¦
0
V

s
N

n�0 gVn

o dV � $0− s
N

n�0

fn%ðoŁm¦ s
N

n�0

fnðoŁn "59#

E9 � ðEŁc �
0
V gV

E dV �
0
V gVm

E dV¦
0
V

s
N

n�0 gVn

E dV � $0− s
N

n�0

fn%ðEŁm¦ s
N

n�0

fnðEŁn

"50#

In the derivation of the above equations\ the relations "39#\ "35#\ "48# and "67# are used[ It is
demonstrated that if a linear piezoelectric ellipsoidal inclusion in an in_nite linear non!piezoelectric
matrix is subjected to the uniform remote strain\ o9\ and electric _eld\ E9\ the constraint strain and
electric _eld inside the inclusion remain uniform[ So\ one has

ðoŁn � o"n#\ ðEŁn � E"n# "51#

Substitution of equations "47#\ "48# and "51# into "59# and "50#\ gives
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o9 � H0 ] o¹m¦H1 = EÞm\ E9 � H2 ] o¹m¦H3 = EÞm "52#

where

H0 � I− s
N

n�0

fn ðI−H0"n#Ł\ H1 � s
N

n�0

fnH
1"n# "53a#

H2 � s
N

n�0

fnH
2"n#\ H3 � i− s

N

n�0

fn ði−H3"n#Ł "53b#

From equations "52#\ one can obtain

o¹
m � M ] o9¦N = E9\ EÞm � P ] o9¦Q = E9 "54#

where

M � ðH0−H1 ="H3#−0 = H2Ł−0\ N � −M ] H1 ="H3#−0 "55a#

P � −"H3#−0 = H2 ] M\ Q �"H3#−0 = ði−H2 ] NŁ "55b#

Substitution of equations "54# into "47# gives the average strain o¹
"n# and electric _eld EÞ"n# as

o¹
"n# � o"n# � M"n# ] o9¦N"n# = E9 "56#

EÞ"n# � E"n# � P"n# ] o9¦Q"n# = E9 "57#

where

M"n# � H0"n# ] M¦H1"n# = P\ N"n# � H0"n# ] N¦H1"n# = Q "58a#

P"n# � H2"n# ] M¦H3"n# = P\ Q"n# � H2"n# ] N¦H3"n# = Q "58b#

Substitution of equations "18#\ "29# and "58# into "43#Ð"45# gives the e}ective electroelastic
moduli of the multiphase piezocomposites with piezoelectric ellipsoidal inclusions by means of the
MoriÐTanaka|s method[

4[ Comparison between predicted and experimental results

Chan and Unsworth "0878# gave the experimental results of 0Ð2 PZT!6A:Araldite D pie!
zocomposite and Furukawa et al[ "0867# obtained the experimental results of 9Ð2 PZT!4A:Epoxy
piezocomposites[ In Appendix A and Appendix B\ the closed!form solutions of the e}ective
electroelastic moduli of the 0Ð2 and 9Ð2 piezocomposites shown in Fig[ 0 are given[ The exper!
imental results and the theoretical curves calculated by the closed!form solutions are plotted in
Fig[ 1 and Fig[ 2\ while 0Ð2 piezocomposite has only the cylindrical inclusion aligned in the
positive direction of 2!axis[ The electroelastic moduli of PZT!6A and PZT!4A used in subsequent
computations are obtained from Chan and Unsworth "0878#\ Furukawa et al[ "0867#\ Ja}e "0860#
and Dunn and Taya "0882#\ and the parameters are given in Table 0 where the well!known two
types of index notations have been adopted[

The parameters M	 \ k½ and d½ in Fig[ 1 "c#Ð"e# and Fig[ 2 are elastic compliance moduli\ dielectric
permittivity and charge constants\ respectively\ which can be determined by the following equations
"Lines and Glass\ 0866#
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Fig[ 0[ "a# The 0Ð2 piezocomposite with two kinds of transversely isotropic piezoelectric cylindrical inclusions[ "b# The
9Ð2 piezocomposite with transversely isotropic piezoelectric spherical inclusion[
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Fig[ 1[ Experimental veri_cation of the variation of relative electroelastic moduli of piezocomposites with unidirectional
transversely isotropic cylindrical inclusion with volume fraction of ceramic and the experimental values are from Chan
et al[ "0878#[ * theoretical results\ , experimental results[

M	 �"CÞ#−0\ d½ � e¹ ] M	 \ k½ � k¹¦d½ ]"e¹#T "69#

where CÞ\ e¹ and k¹ are obtained from equations "43#Ð"45#[
The parameters kt and kp in Fig[ 1 "a#Ð"b# are the thickness coupling constant and the planar

coupling constant\ respectively\ which can be calculated as follows "Ja}e\ 0860#

kp �X
1"d½200#1

k½22"M	 0000¦M	 0011#
\ kt �

B−Akp

z0−A1z0−k1
p

"60#

where
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Fig[ 2[ Experimental veri_cation of the variation of relative electroelastic moduli of piezocomposites with transversely
isotropic spherical inclusion with volume fraction of ceramic and the experimental values come from Furukawa et al[
"0865#[ * theoretical results\ , experimental results[

Table 0
Electroelastic material properties

C00 C01 C02 C22 C33 e20 e22 e04 k00:k9� k22:k9�
"GPa# "GPa# "GPa# "GPa# "GPa# "C:m1# "C:m1# "C:m1#

PZT!6A 037 65[1 63[1 020 14[3 −1[0 8[4 8[1 359 124
PZT!4A 010 64[3 64[1 000 10[0 −4[3 04[7 01[2 805 729
Araldite D 7[9 3[3 3[3 7[9 0[7 9 9 9 3[9 3[9
Epoxy 7[9 3[3 3[3 7[9 0[7 9 9 9 3[1 3[1

� k9 � 7[74×09−01 C:Vm1[

A �X
1"M	 0022#1

M	 2222"M	 0000−M	 0011#
\ B �X

"d½222#1

k½22M	 2222

"61#

Figures 1 and 2 show that the theoretical curves calculated by means of the Mori!Tanaka|s
method agree quite well with the experimental values\ but the theoretical curves obtained by the
dilute solution agree well with the experimental values only when the volume fraction of the
ceramic inclusion is smaller than 9[2[

5[ The analysis of the 0Ð2 piezocomposites with two kinds of transversely isotropic piezoelectric

cylindrical inclusions

In this section\ it is analyzed in detail for the 0Ð2 piezocomposites with two kinds of transversely
isotropic piezoelectric cylindrical inclusions shown in Fig[ 0"a#\ in which one phase is in the positive
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Fig[ 3[ Variations of e}ective electroelastic moduli of 0Ð2 piezocomposite of two kinds of transversely isotropic cylindrical
inclusions in "s\ E# space with f9 and Cf[

direction of 2!axis with a volume fraction f ¦ and the other phase is in the negative direction of the
2!axis with a volume fraction f −[ The variations of the e}ective electroelastic properties of this
kind of the piezocomposite calculated by the MoriÐTanaka|s method with f9 and Cf are shown in
Figs 3Ð6[ f9 is the total volume fraction\ i[e[ f9 � f ¦¦f −\ and Cf � f −:f9[ Thus\ f ¦ and f − can be
expressed by f9 and Cf as follows

f ¦ �"0−Cf# f9\ f − � Cf f9 "62#

It can be shown from the closed!form solutions of the e}ective electroelastic moduli of this kind
of piezocomposite and from Figs 3Ð6 that
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Fig[ 3*continued[

"0# Except CÞ0202 and M	 0202\ the other components of elastic moduli CÞ and elastic compliance moduli
M	 do not vary with Cf[ In other words CÞ0202 and M	 0202 depend not only on elastic properties but
also on piezoelectric and dielectric properties of the inclusions and matrix[ The other components
of CÞ and M	 depend only on elastic properties of the inclusions and the matrix[

"1# e¹ and d½ are zero when Cf � 9[4 i[e[ f ¦ � f −[ In this case\ the composite does not have any
electricÐmechanical coupling[

"2# k¹ 00 and k¹ 22 reach their greatest values at f9 � 0 and Cf � 9[4[ k½ 00 and k½ 22 approach to their
greatest values when f9 � 0 and Cf � 9 or Cf � 0[

"3# kp reaches its greatest value when f90 and Cf � 9 or Cf � 0 and its smallest one when f9 � 0
and Cf � 9[4[ kt approaches to its smallest value while f9 � 0 and Cf � 9[4 and its greatest one
while f9 is about 9[7 and Cf � 9 or Cf � 0[



B[ Jian` et al[:International Journal of Solids and Structures 25 "0888# 1696Ð1622 1614

Fig[ 4[ Variations of e}ective electroelastic moduli of 0Ð2 piezocomposite of two kinds of transversely isotropic cylindrical
inclusions in "o\ E# space with f9 and Cf[

6[ Conclusions

In this paper\ the closed!form solutions of the electroelastic Eshelby|s tensors of a piezoelectric
ellipsoidal inclusion in an in_nite non!piezoelectric matrix are obtained via the Green|s function
technique[ Based on the generalized Budiansky|s energy!equivalence framework and the closed!
form solutions of the electroelastic Eshelby|s tensors\ a uni_ed model for multiphase pie!
zocomposites of non!piezoelectric matrix and piezoelectric inclusions has been set up[ The uni_ed
model can describe the multiphase piezocomposites with di}erent connectivities[ The closed!form
solutions of the e}ective electroelastic moduli of piezocomposites are also obtained[ The relations
can be expressed by the material constants of the inclusions C"n#\ e"n#\ k"n#\ the material constants
of the matrix C\ k\ the Eshelby|s tensors of the perfectly elastic inclusion problem S"n#\ the Eshelby|s
tensors of the perfectly dielectric inclusion problem\ s"n#\ and the volume concentrations of the
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Fig[ 4*continued[

individual phase fn "n � 0\ [ [ [ \ N#[ Since S"n# and s"n# can be obtained by means of the perfectly
elastic inclusion problem and the perfectly dielectric inclusion problem\ respectively\ the closed!
form solutions of the e}ective electroelastic moduli of the piezocomposites can be gained
conveniently[ The results in this paper can be used to analyze and design the multiphase piezo!
composites[

Appendix A] The closed!form solutions of the effective moduli of the 0Ð2 piezocomposite with

two kinds of transversely isotropic piezoelectric cylindrical inclusions and non!piezoelectric

matrix

As an important example\ the 0Ð2 piezocomposite with two kinds of piezoelectric cylindrical
inclusions shown in Fig[ 0"a# is considered in detail[ In which one phase is aligned in the positive
direction of 2!axis and another phase is in the negative direction of 2!axis[ The closed!form
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Fig[ 5[ Variations of d½h and e¹h with f9 and Cf[ Where d½h � d½222¦1d½200 and e¹h � e¹222¦1e¹200[

relations of the e}ective electroelastic moduli of this kind of piezocomposite are given[ It is assumed
that the piezoelectric inclusions are transversely isotropic and the matrix is isotropic[

For the inclusion\ its non!zero material constants are

C�0000 � C�1111\ C�0022 � C�1122\ C�2222\ C�0202 � C�1212\ C�0101 �
0
1

"C�0000−C�0011#

e�200 � e�211\ e�222\ e�002 � e�112\ k�00 � k�11\ k�22 "A0#
where 2!axis is the symmetric axis[

The material constants of the matrix are

C−0
ijkl �

0
C0000−C0011

Iijkl−
C0011

"C0000−C0011#"C0000¦1C0011#
dijdkl kij � kdij "A1#

In order to simplify the equations\ several parameters are introduced by
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Fig[ 6[ Variations of planar coupling constant kp and thickness coupling constant kt with f9 and Cf[

b0 �
C9

0000

C0000

\ b1 �
C9

0011

C0000

\ b2 �
C9

0022

C0000

\ b3 �
C9

0202

C0000

\ b4 �
C9

0101

C0000

\ b5 �
C9

2222

C0000

"A2#

a0 �
C0011

C0000

\ c0 �
k9

00

k00

\ c1 �
k9

22

k00

\ h0 �
"e�002#1

k00C0000

\ h1 �
"e�200#1

k00C0000

"A3#

where

C9 � C�−C \ k9 � k�−k "A4#

Appendix AI] The dilute solution or non!interaction solution

The non!zero components of CÞ are

CÞ0000¦CÞ0011 � C000060¦a0¦
1f9"b0¦b1#
1¦b0¦b1 7 "AI0a#
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CÞ0000−CÞ0011 � C000060−a0¦
3f9"0−a0#"b0−b1#

3"0−a0#¦"2−a0#"b0−b1#7 "AI0b#

CÞ2222 � C000060¦f9$b5−
1b1

2

1¦b0¦b1%7 "AI0c#

CÞ0022 � CÞ1122 � C00006a0¦
f9b2

1¦b0¦b17 "AI0d#

CÞ0202 � CÞ1212 � C0000"0−a0#6
0
1

¦
f9 ðh0¦"1¦c0#b3Ł

h0¦"1¦c0#"0−a0¦b3#7 "AI0e#

CÞ0101 � C0000"0−a0#6
0
1

¦
1f9b4

1"0−a0#¦"2−a0#b47
CÞijkl � CÞjikl � CÞijlk � CÞklij "AI0f#

The non!zero components of k¹ are

k¹00 � k¹11 � k0060¦
1f9 ðh0¦"0−a0¦b3#c0Ł
h0¦"1¦c0#"0−a0¦b3#7 "AI1a#

k¹22 � k0060¦f9$c1¦
1h1

1¦b0¦b1%7 "AI1b#

The non!zero components of e¹ are

e¹002 � e¹122 �
1" f ¦−f −#"0−a0#e�002

h0¦"1¦c0#"0−a0¦b3#
"AI2a#

e¹200 � e¹211 �
1" f ¦−f −#e�200

1¦b0¦b1

"AI2b#

e¹222 �" f ¦−f −#0e�222−
1b2e�200

1¦b0¦b11
e¹pij � e¹pji "AI2c#

where f9 is the total volume fraction of the piezoelectric inclusions^ f ¦ and f − are the volume
concentrations of the piezoelectric inclusion in the positive direction of 2!axis and in the negative
direction of 2!axis\ respectively[ The relation among them is f ¦¦f − � f9[
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Appendix AII] The MoriÐTanaka|s method

The non!zero components of CÞ are

CÞ0000¦CÞ0011 � C000060¦a0¦
1f9"b0¦b1#

1¦"0−f9#"b0¦b1#7 "AII0a#

CÞ0000−CÞ0011 � C000060−a0¦
3f9"0−a0#"b0−b1#

3"0−a0#¦"0−f9#"2−a0#"b0−b1#Ł7 "AII0b#

CÞ2222 � C000060¦f9$b5−
1"0−f9#b1

2

1¦"0−f9#"b0¦b1#%7 "AII0c#

CÞ0022 � CÞ1122 � C00006a0¦
1f9b2

1¦"0−f9#"b0¦b1#7 "AII0d#

CÞ0101 � C0000"0−a0#6
0
1

¦
1f9b4

1"0−a0#¦"0−f9#"2−a0#b47 "AII0e#

CÞ0202 � C0000"0−a0#6
0
1

¦
f9 ð1b3¦"0−f9#"h0¦1b3¦c0b3#Ł¦7f ¦f −l0

C
" f9#−7f ¦f −l0 7 "AII0f#

CÞ1111 � CÞ0000^ CÞ1212 � CÞ0202 "AII0g#

CÞijkl � CÞjikl � CÞijlk � CÞklij "AII0h#

where

C
" f9# � 1"0−a0#¦"0−f9#"c0¦1b3−c0a0#¦"0−f9#1"c0b3¦h0# "AII0i#

l0 �
"0−a0#h0

h0¦"1¦c0#"0−a0¦b3#
"AII0j#

The non!zero components of k¹ are

k¹00 � kÞ11 � k0060¦
1f9 ðc0"0−a0#¦"0−f9#"c0b3¦h0#Ł¦05f ¦f −l0

C
" f9#−7f ¦f −l0 7 "AII1a#

k¹22 � k0060¦f9$c1¦
1"0−f9#h1¦05f ¦f −l1

1¦"0−f9#"b0¦b1# %7 "AII1b#

where

l1 �
h1

1¦b0¦b1

"AII1c#

The non!components of e¹ are
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e¹002 � e¹112 �
1" f ¦−f −#"0−a0#e�002

C
" f9#−7f ¦f −l0

"AII2a#

e¹200 � e¹211 �
1" f ¦−f −#e�200

1¦"0−f9#"b0¦b1#
"AII2b#

e¹222 �" f ¦−f −#6e�222−
1"0−f9#b2e�200

1¦"0−f9#"b0¦b1#7
e¹pij � e¹pji "AII2c#

Appendix B] The closed!form solutions of the effective moduli of the piezocomposite with

transversely isotropic piezoelectric spherical inclusion

As another important example\ the 9Ð2 piezocomposite with transversely isotropic piezoelectric
spherical inclusion shown in Fig[ 0"b# is considered in detail[ The material constants are the same
as those in Appendix A\ which can be expressed by eqns "A0#Ð"A5#[ The closed!form relations of
the e}ective electroelastic moduli of this kind of piezocomposite are given[

The non!zero components of CÞ are]

CÞ0000¦CÞ0011 � C000060¦a0¦f
0
V9$04"0−a0#"b0¦b1#¦"6−2a0#b9¦

1k008
1
1

C0000V%7 "B0a#

CÞ0000−CÞ0011 �"0−a0#C000060¦f
04"b0−b1#

04"0−a0#¦1"3−a0#"b0−b1#7 "B0b#

CÞ0022 � CÞ1122 � C00006a0¦f
0
V9$04"0−a0#b2¦"0¦a0#b9¦

k008182

C0000V %7 "B0c#

CÞ2222 � C000060¦f
0
V9$04"0−a0#b5¦"5−3a0#b9¦

k008
1
2

C0000V%7 "B0d#

CÞ0202 � CÞ1212 �
0
1
"0−a0#C000060¦f

29
v

ðh0¦"2¦c0#b3Ł7 "B0e#

CÞ0101 �
0
1
"0−a0#C000060¦f

29b4

04"0−a0#¦1"3−a0#b47
CÞijkl � CÞjikl � CÞijlk � CÞklij "B0f#

The non!zero components of k¹ are]
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k¹00 � k¹11 � k00$0¦2f00−
2v9

v 1%\ k¹22 � k00$0¦2f00−
2V9

V 1% "B1#

The non!zero components of e¹ are]

e¹002 � e¹020 � e¹112 � e¹121 � f
2k0080

v
"B2a#

e¹200 � e¹211 � f
2k0081

V
\ e¹222 � f

2k0082

V
"B2b#

where

80 � 04"0−a0#×
e�002

k00

"B3a#

81 �
0

k00

ð4"0−a0#"e9−e¹9#−"6−2a0#e0¦"0¦a0#e1Ł "B3b#

82 �
0

k00

ð4"0−a0#"e9¦1e¹9#−1"0¦a0#e0¦"5−3a0#e1Ł "B3c#

v9 � 04"0−a0#¦3"3−a0#b3 "B4a#

v � 3"3−a0#h0¦"2¦c0#v9 "B4b#

V9 � 04"0−a0#¦"5−3a0#"b0¦b1#¦"6−2a0#b5−3"0¦a0#b2¦
1
2
"3−a0#b9 "B5a#

V0 �
0

8k00C0000

"04"0−a0#e1
9¦1"3−a0#ð5e¹1

9¦"e1−1e0#e9¦1"e0¦e1#e¹9# "B5b#

V � V0¦"2¦c1#V9 "B5c#

and

b9 �"b0¦b1#b5−1b1
2 "B6a#

e9 � e�222¦1e�200\ e¹9 � e�222−e�200 "B6b#

e0 � b2e�222−bbe�200\ e1 �"b0¦b1#e�222−1b2e�200 "B6c#
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